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INEQUALITIES WITH APPLICATION IN ECONOMIC RISK ANALYSIS

ROBERT A. AGNEW*, Adir Force Institute of Technology, Wright-Patterson
Air Force Base, Ohio

Abstract

Two sharp lower bounds for the expectation of a function of a non-negative
random variable are obtained under rather weak hypotheses regarding the
function, thus generalizing two sharp upper bounds obtained by Brook for the
moment generating function. The application of these bounds to economic risk
analysis is discussed.
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1. Introduaction

Let X be a non-negative random variable with u = E(X) >0 and A = E(X?)
< o0. In [3], Brook obtained sharp finite upper bounds, via the ‘““Method of
Markov” [8], for E{exp(pX)) in terms of (i) p and 6, where X < § < oo, for ar-
bitrary real p and (ii) u and A for p < 0. In the next section, we generalize Brook’s
results in order to obtain sharp lower bounds for E(f(X)) under rather weak
hypotheses regarding f. In the final section, we discuss briefly the application of
these results to economic risk analysis.

We assume throughout that f is a real-valued function on [0,c0) with f(0) = 0
and g(x) =f(x)/x on (0,00). We shall make use of some elementary properties of
convex functions; the reader is referred to [5], [7], and [10].

2. The inequalities

Theorem 1. Suppose that X < é < co and that g is non-increasing on (0, d].
Then,

) E(J(X)) 2 pg(d) = (/) f(9)
and the bound is shaip.

Proof. E(f(X)) =z ap if f (x) = ax for all x€[0,0]. f(x) = ax for all x € [0,8]
if and only if g(x) = a for all x €(0,] which is equivalent to g(é) = a since g is
non-increasing. Hence, the maximum possible value for a is g(J) and the resulting
bound (1) is obviously attained when X is concentrated at J.
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Remarks. It is not difficult to show (under our assumptions) that f concave
on [0,6] implies g non-increasing on (0,5]. If f is continous on (0,6] and differen-
tiable on (0,0), g is non-increasing on (0,4] if and only if g’ £0 (or f = xf' = 0)
on (0,9).

Theorem 2. Suppose that g is convex on (0,00), and put y = A /u. Then,
2) E(f(X) Z ng(y) = WP INf (A [0
and the bound is sharp.

Proof. E(f(X))Z ap + bAif f(x) = ax + bx? for all x = 0. f(x) = ax + bx>
for all x = 0 if and only if g(x) = a + bx for all x > 0. Let & > 0 be arbitrary.
By the convexity of g, there exists a b(£) such that

(3) g(x) =2 g(&) + b(O)(x — &)
for all x > 0, and it follows that
@ E(f (X)) Z m(g(€) + b)) (y — &)

for every ¢ >0. But (3) and (4) together imply that & =y yields the maximal bound,
and the bound (2) is obviously attained when X is concentrated at u.

Remarks. When both theorems apply, (2) always provides at least as tight
a bound since y < 4. If f is twice differentiable on (0,00), g is convex on (0,00) if
and only if g’* = 0 (or 2f — 2xf’ -+ x2f’’ = 0) on (0,00).

Examples. The following three functions satisfy both Theorem 1 (for arbitrary
d) and Theorem 2.

% f)y=1—exp(~px); p>0
(6 fx) = x+p*—p50<a=s1, f20
(D f(x) =log(x + ) —logB; B>0.

Inequalities (1) and (2) applied to (5) yield upper bounds for E(exp( — pX)) that
are equivalent to those of Brook [3] (Theorem 1 is satisfied for arbitrary real p).
If Y is a random variable with Y > §, E(Y) > f, and X = Y— §, then the inequal-
ities applied to (6) and (7) yield lower bounds for E(Y®) and E(logY) respectively
(Theorem 2 also applies to (6) for « = 2). The inequalities applied to the composi-
tion of (5) and (6) yield upper bounds for E(exp( — pY®), and they yield upper
bounds for E(Y ~%) when applied to the composition of (5) and (7). Note that the
functions (5), (6), and (7) are all of the form f(x) = [§ h(u)du where h is non-
increasing, positive, and convex; referring to [4] and [10], our theorems apply
to such functions under rather general conditions.
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3. Application to economic risk analysis

Economic risk analysis is concerned with the following situation. An individ-
ual (group, firm, etc.) has a positive stock of wealth (capital) and a number of
mutually exclusive alternative risky prospects (investments) for employing this
wealth. The wealth associated with a risky prospect is assumed to be a non-neg-
ative random variable so that the present stock of wealth may be diminished, or
even eliminated, but it cannot become negative. In this context, the individual’s
problem is to decide on a prospect. This decision problem has received a great deal
of attention by economists; the reader is referred particularly to the books by
Arrow [1] and Borch [2].

If the von Neumann-Morgenstern axioms [11] (or some version thereof) are
accepted, a rational individual should construct a utility function (say by consid-
ering simple lotteries) and then select the prospect maximizing the expected utility
of wealth. As an alternative to actually constructing a utility function, an individ-
ual can select one of the various functional forms deemed ‘‘reasonable’’ by econ-
omists [1],[2],[12] and specify the parameters (if any) to suit himself. We remark
that versions of (5), (6), and (7) have all been suggested as reasonable utilities of
wealth.

Now, even if the individual knows the distribution of wealth associated with
each prospect, it may be difficult or impossible to compute all the expected util-
ities and to isolate the prospect maximizing expected utility. An alternative proce-
dure is to compute lower bounds for the expected utilities and to isolate the pros-
pect having the maximal lower bound. Moreover, this alternative is feasible (at
least in principle) even when the various distributions are unknown, provided that
lower bounds can be constructed. For at least some utility functions, our inequal-
ities (1) and (2) provide a means of constructing lower bounds depending only on
two (or perhaps three) distribution parameters. Economists may find this lower
bound approach, when applicable, to be more useful (and palatable) than alter-
native approximate procedures.
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