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ABSTRACT

Suppose that an individual has a surplus stock of wealth and a fixed set of risky invest-
ment opportunities. over a sequence of time periods. Assuming the criterion of maximal
long-run average rate-of-return, the individual may select portfolios sequentially via a modi-
fied stochastic approximation procedure. This approach yields optimal asymptotic investment
results under minimal assumptions.

1. INTRODUCTION

Suppose that an individual has a stock of wealth which is not required for short-run consumption
expenditures and a fixed set of risky investment opportunities over an indefinite horizon of discrete
time periods. Assuming time homogeneity and period-wise independence (or near independence) of
investment results, Breiman [6], [7] has demonstrated that a portfolio (i.e., an allocation of wealth to
the various investment opportunities) which maximizes the expected logarithm of period-wise growth
is “optimal” in the sense that it maximizes the long-run average rate-of-return (or rate of growth) as
the time horizon tends to infinity. (Actually, the treatment in {6] is somewhat more general.) Moreover,
Breiman’s optimal portfolio is a “fixed proportions” portfolio in that the proportions of wealth allocated
to the various investment opportunities do not vary with the magnitude of wealth.

Now, if the individual accepts Breiman’s optimality criterion, he will want to obtain the optimal
proportions and employ them at every future period. However, in any realistic situation, the individual
can only estimate the optimal proportions initially, and he will want to improve his estimates (and hence
his investment results) as he goes along. A good sequential approximation scheme should yield the
optimal proportions and should attain the maximal average rate-of-return in the limit as the time horizon
tends to infinity, (It appears that even the best conceivable statistical procedures will have sufficient
asymptotic variation to render them “inadmissible”” in the sense of Breiman [6]; i.e., the individual
would be infinitely better off if he knew the optimal proportions. Of course, our purpose is to treat the
case where these optimal proportions are unknown.)

As a suitable approximation scheme, we suggest a modified (generally multivariate) Kiefer-
Wolfowitz -stochastic approximation procedure [24], [10] to [15], [32], [33], [37], [38]. This approach
requires minimal assumptions and calculations, and it yields the desired results in the limit. After some
preliminaries in the next section, the approximation procedure is presented in section 3 and its con-
vergence properties are discussed. A simulated numerical example is presented in section 4, and
section 5 discusses the addition of withdrawals for consumption.
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334 R. A. AGNEW

2. PRELIMINARIES

Let Gy, . . ., G; be nonnegative random variables representing the “growth factors” associated
with £ = 1 risky investment opportunities over a given time period; i.e., a dollar invested in opportunity
J yvields G; dollars at the end of the period. We assume that E(G;) <oforalj=1,...,k

k
Let x; be the proportion of wealth invested in opportunity j. We shall require that ) x; < for
=

k

some ye(0,1);1— 2 xj = 1 —7 >0 then represents the proportion of wealth held in a “riskless asset”
=

assumed to have growth factor g = 1 with probability one. Let

k
Q) S={x= (%1, « . . xk):zxj$y; Xty o o ey ka()}
]

J
represent the set of feasible proportional allocations or “portfolios.” Given x€S, let

k

@) G(x)=g(l—2 xj)+§kj Cro=g+ S (G-
A =

=

represent the portfolio growth factor over the given period; i.e., a dollar invested in portfolio xeS
yields G(x) dollars at the end of the period. According to Breiman’s criterion, the objective is to maximize

@) f(x)=E(log (G(x)))

over S. This expectation exists because G(x) 2 g(1—v) >0 and E(G(x)) < =, In fact, it is easy to
see that E(|log (G(x))|?) is uniformly bounded on S for any integer p = 1.
By the strict concavity of the log function, fis concave on S. Moreover, it is strictly concave if the

k
G;—g are linearly independent (i.e., P{ (Gj—g)§j=0} <1 whenever £= (&, . . ., &) #0), and
=1

j
this latter condition holds if the covariance matrix of the G; is positive definite. We shall assume strict

~ concavity. Furthermore, we shall assume that f attains its unique maximum at an interior point 9eS;
i.e., none of our investment opportunities, including the riskless asset, is completely inferior to any
other, and the optimal portfolio is “diversified.” Since the riskless portfolio is feasible, it follows that
f(8) >log (g) =0.

Under our previous assumptions, the first and second order partial derivatives of f exist and are
uniformly bounded in absolute value on S. Indeed, we have

@) 3af/9x;(x) =E((G;—8)/G(x))

so the optimality condition 9 f/dx; () =0 implies

(5) E(Gj/G(6)) =E(s/G(6))=1
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which indicates that the optimal portfolio “balances” the various investment opportunities in an intui-

tive way. The second order derivatives
(6) 0%floxi0x;(x) =—E((Gi—g) (G;—8)/G(x}?)

need not be continuous, but continuity would follow from the existence of higher moments for the G;.
In general, the existence of pth order moments for the G; implies the existence and boundedness of
pth order derivatives for f. If, in particular, the G; are bounded random variables, derivatives of all
orders exist on S.

3. THE APPROXIMATION PROCEDURE
Let W > 0 be our initial wealth, and let X;= (X,,1, . . ., X1,x) be our initial estimate of 6. We

A .
assume that ¢ < min X, ; and 2 X,,j<vy—c, where 0 <c¢ <vy/(k+1). Define positive sequences
J :
Jj=1

{an} and {cx} by an=an"2 and cn=cn"B, where 0 <8< 1/2 and max (1/2+8, 1 —28)<a<1. Let
e; denote the jth unit vector of dimension k, and let A(u) =0 for u <0, h(u) =u for u> 0.

Our approximation procedure will evolve over a sequence of “stages,” each stage encompassing
2k consecutive time periods. Qur estimate of 8 at the nth stage will be denoted by Xn= (X»n,1, . . -,
Xa,k), and our wealth after the nth stage will be denoted by W,. During the nth stage, we implement
the 2k portfolios X, = cre; (j=1, . . ., k), and we realize the corresponding growth factors

() Gz, ZG(XnEcnes),

d
where = means “identically distributed,” and G(x) denotes the random function defined in section 2.
It follows then that

®) E(Jlog (G2 )| < C< =
and assuming period-wise independence (or near independence) of component growth factors

©) E (log (G£ )|Xn, . . -, X1) = f(Xn = cae;)

so the Kiefer-Wolfowitz scheme would ordinarily put

(10) Xn+1=Xn+anYn,
where Y,= (Yu,1,. .., Yy ), and
(11) Yo ;= (2cn)(log (GI,]-) —log (G;,j))

is an estimate of 0 f/dx;(X»). However, we must modify the basic recursion relation (10) in order to

ensure feasibility. Our proposed modification is in no sense unique, but it is rather simple.
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We put
(12) Jn={j:Ya,; >0},
(13) An,j=Yn,; /2 Yau,i (jeJ ),
(14) Bu, ;= max (ca, Xn,;+ an¥n,;),
(15) Xni1,j=Bn,; > cns1 (J€Jn),
16) Xner,;= Ba;— Au sh iBn,i—wcn) (e,

and it is not difficult to establish

(17) Xuni1,;>Xn, 5 (JeJa),
k
(18) EXn+1,j<')’_Cn<')’"Cn+1,
j=1

from which it follows that all implemented portfolios X, = cxe; are interior points of the feasible set S.

Since 6 is an interior point of S by assumption, the asymptotic behavior of the approximation
procedure will be unaffected by the feasibility requirements. Under our assumptions (cf. Theorem
4.4 in [33]), X+ — 6 with probability one as n — . Moreover,

19) log (W) —log Wu—1) =3, (log (G5,,) +log (67,,)

Jj=1

so that n=1(log (W) —log (Wy)) = 2kf(6) or Wln— exp (2kf(0)) with probability one by the Strong
Law for Martingales [18]. Hence, the optimal pfoportions and the maximal average'rate-of-return are
attained almost surely in the limit as the time horizon tends to infinity.

Now, a, ¢, «, B, v, and the vector X; are parameters to be stipulated by the individual. Obviously,
X, should be the individual’s best initial estimate of 8, and v should be chosen sufficiently close to one
so that 0 is certain to be an interior point of the feasible set S. Furthermore, it is clear that a should
be sufficiently small relative to ¢ so that the procedure will avoid the boundary at the first iteration.
(Indeed, a can be stipulated after the first stage results are known.)

Under slightly stronger assumptions, we can investigate the effect of various choices of a, c, a,
and B8 on the asymptotic behavior of our approximation procedure. Suppose, for instance, that our
basic growth factors in section 2 possess finite third moments so that f has bounded third derivatives
on S. In addition, suppose that the minimum eigenvalue of —H(x) is bounded away from zero on S,
where
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(20) H (x) = [92flomidx () 1% _,
is the Hessian of f. Under these assumptions, 0 < 8 < 1/6 and o= 68 yield

(21) E(||Xn—8][2)=0(n*F)
¥

(cf. Theorem 4.6 in [33]) so the procedure converges in the mean square even if the various conditions
on « and B for probability one convergence are violated. Indeed, for 8 very close to zero and a=68,
our procedure is akin to a perpetual control process.

Assuming further that f has continuous third derivatives and that a =68 with ¥/s < 8 < ¥/s, we have
X,— 0 with probability one, and in addition n?8(X,—6) is asymptotically normal (cf. Theorem 4.7 in
[33]) with mean vector

22) ‘ ' w=cim

and covariance matrix

(23) V= (alc*)a*M,
where
(24) a*=var (log (G(6)))

and m is a vector, M a matrix, dependent only on the behavior of fin the immediate vicinity of 6. It
follows that asymptotically

25) E(]|Xn—0]|?) = n~*8(bic*+ b2 (a/c?)),

where b, and b, are positive constants which are independent of the choice of parameters and which
are in some sense inversely proportional to the degree of curvature in f at 6. From this result, it is
clear that asymptotic speed and precision are increased as 8 is increased, as c is decreased, and as
a is decreased relative to c¢. On the other hand, if a is chosen too small, the procedure will barely move
at all in the short run, and this may be undesirable if X, is not a particularly good estimate of 6. In
general, the individual must stipulate the parameters a, d, and 8 subjectively in order to balance his
short and long term expectations.

4. SIMULATED NUMERICAL EXAMPLE

Consider a simplified environment where cash is the riskless asset with g=1 and the single risky
investment opportunity is a simple “double or nothing” favorable gamble (cf. [19], [35], [36]) with
constant probability success p=0.55. Then,

(26) fx)=plog 1+x)+qlog (1—x)
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with ¢g=1—p=0.45. Furthermore,

@27) 6=p—g=0.10

28) exp (f(8))=2pPq?=1.005
(29) f''(6)=—1/4pg =—1.010
(30) [ (8)=—6/4(pq)* = —0.408
31) o*=pq (log (p/q))* = 0.010

and the constants in (25) are
32) 1= (f"""(0)/6f""(6))* = 0.0045
(33) bo=c?[4| f'(0)| = 0.0025.
Now suppose that our individual has 50 independent gambling opportunities per year so that the

optimum annualized long-run rate-of-return is about 28.4 percent. Since k=1, 50 trials correspond to

25 stages per year in our approximation procedure, and we may simplify the notation of section 3 to

(34) =1+ Q2U: — 1) (Xn*cn)

(35) Yn= (2¢4)~* (og (G}) —log (G3))

(36) Xn+1= max (cu, min (y — ¢ny Xn + an¥n))

@7) Wa=exp (3 log (67) +log (67)))
iz1

where X *+ ¢, € (0, v) are simply the proportions of wealth gambled at the two trials in stage n, U* are
the corresponding zerofone (losef/win) indicator random variables, and Wy = 1 for simplicity.

In order to better illustrate how our approximation procedure works, we have simulated 10 1-year
runs with X; = 0.08, ¢ = 0.05, a = 0.001 and 0.01, y = 0.20, 8 = 0.15, and a = 68 = 0.90. The random
numbers employed were taken from the first 10 columns on p. 480 of [4]; i.e., each column of 50 random
numbers was used to generate a 1-year simulation run. The net results are listed in Table 1, whereas

Run 2 is detailed step-by-step in Table 2. Note the difference in short-run variation between the cases
a=0.001 and a = 0.01.

5. CONCLUDING REMARKS

Suppose that our individual wishes to make withdrawals from his stock of wealth for purposes of

consumption. Joint optimization of consumption-investment decisions over time has generally been
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TABLE 1. Net Simulation Results

a=0.001 a=10.01
Run
X26 W25 XZG W25
1 0.0825 2.997 0.1044 3.785
2 0.0816 1.364 0.0958 1.334
3 0.0789 1.281 0.0679 1.229
4 0.0817 1.288 0.0966 1.220
5 0.0776 2.208 0.0602 1.698
6 0.0788 3.612 0.0694 2.779
7 0.0764 0.409 0.0486 0.480
8 0.0817 1.124 0.0972 1.047
9 0.0820 1.715 0.0993 1.691
10 0.0818 1.693 0.0970 1.735
Average 0.0803 1.769 0.0836 1.700
TABLE 2. Simulation Run 2
a=0.001 a=0.01
n U : U Y
X, W Xa Wa
1 1 1 0.0800 1.164 0.0800 1.164
2 1 0 0.0809 1.264 0.0893 1.262
3 1 1 0.0818 1.477 0.0994 1.523
4 0 0 0.0822 1.241 0.1028 1.223
5 1 1 0.0819 1.451 0.0996 1.477
6 0 1 0.0821 1.333 0.1018 1.351
7 0 0 0.0817 1.122 0.0962 1.102
8 0 1 0.0815 1.034 0.0943 1.013
9 1 1 0.0811 1.207 0.0902 1.203
10 1 0 0.0812 1.286 0.0914 1.279
11 0 0 0.0815 1.083 0.0946 1.047
12 1- 1 0.0814 1.266 0.0933 1.250
13 1 0 0.0815 1.345 0.0943 1.326
14 1 0 0.0817 1.428 0.0970 1.404
15 1 1 0.0819 1.670 0.0996 1.696
16 1 0 0.0820 1.771 0.1004 1.793
17 0 0 0.0822 1.490 0.1028 1.441
18 0 1 0.0821 1.384 0.1019 1.334
19 0 1 0.0819 1.288 0.0995 1.237
20 0 0 0.0817 1.084 0.0972 1.007
21 1 0 0.0817 1.147 0.0965 1.062
22 1 1 0.0818 1.341 0.0984 1.280
23 1 1 0.0819 1.569 0.0990 1.545
24 0 1 0.0819 1.462 0.0995 1.435
25 0 1 0.0818 1.364 0.0976 1.334
26 0.0816 0.0958

339

addressed in the literature via two criteria: maximum discounted expected utility of long-run con-
sumption (or a suitable combination of consumption and wealth) [17], [21], [22], [25], [27], [28], [30]

and minimum probability of ruin in the context of rigid consumption requirements [19}, [35], [36].
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" Both criteria yield rather complicated dynamic programming type functional equations to be solved
for the optimum consumption-investment policies. (It should be mentioned, however, that a variety
of intriguing inferential results have been obtained via these characterizations.) We shall ignore the
problem of joint optimization and merely indicate an intuitive means of adding a flexible consumption
policy to the approximation procedure developed in section 3.

Let p, be a nonnegative sequence converging to zero {e.g., p» = 0). Referring to section 3, we put

(38) Z,=3 (log (G1,) +log (G; ,))
3=

(39) I/n=nr_1 i Zi=n-IZn+ (l_n_l)Vn—x
=1

(Vo=0) so that ¥, = 2kf (8) with probability one. Putting
(40) Th=max (pn ’ Vn) ’

we also have T, = 2kf (8) with probability one. Now let C, be the withdrawal for consumption at the
end of stage n and let ¥, be the postwithdrawal wealth so that

1) Wi+ Co=Wy-1 exp (Zn).
Our policy is

(42) Wn= (Wr+Cp) exp (—8T)
(43) Co= (Wa+Cr)(1—exp (—3T3)),

where 8€(0, 1) is a subjective parameter. (The procedure in section 3 corresponds to §=0.)

We have then that W1/» and also CY" converge to exp ((1—8)2kf(8)) with probability one so that
8 provides a flexible mechanism for trading off short and long term consumption. The long term is
weighted heavily when 8 is near zero, whereas the short term is weighted heavily when 3 is near one.
(Note that our stage-wise withdrawal policy could easily be made period-wise.)

Given an extensive set of risky investment opportunities, it may be necessary to aggregate in order
to render the approximation problem manageable. For instance, one can imagine a one-dimensional
trade-off between a riskless asset and a suitably defined ‘“market portfolio” [23].

Regarding speed of convergence, we note that asymptotic speed can be improved via Fabian’s
generalized Kiefer-Wolfowitz procedures at the expense of increased analytical complexity [13], [14],
[15], [33]. Nevertheless, any statistical procedure will converge rather slowly in comparison to deter-
ministic procedures. On the other hand, deterministic procedures do not apply directly to problems
where randomness is a fundamental ingredient. Any rigorous statistical procedure will proceed rather
cautiously in order to properly screen valid information about the underlying objective function from
pure random noise [38].
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Samuelson [31] has questioned the long-run average rate-of-return criterion on the basis of alterna-
tive, finite-stage utility criteria. He notes that not all individuals need be limiting logarithmic utility
maximizers. While this is undoubtedly true, logarithmic utility is distinguished by the fact that it does
possess some external justification. On the other hand, one can easily tailor our approximation pro-
cedure to a modified criterion such as

(44) fx)=E(G(x)")

(0 <m < 1) which would maximize E((W /W ,-1)") in the limit. In any event, the infinite stage éetup
is obviously convenient when the ultimate number of stages is undetermined.
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