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ABSTRACT

Suppose that a contractor is faced with a sequence of “minimum bid wins contract”
competitions. Assuming that a contractor knows his cost to fulfill the contract at each
competition and that competitors are merely informed whether or not they have won, bids
may be selected sequentially via a tailored stochastic approximation procedure. The efficacy
of this approach in certain bidding environments is investigated.

1. INTRODUCTION

Consider the sequential decision problem of a contractor facing an interminable sequence of
“minimum bid wins contract” (sealed-bid) competitions for similar contracts. If a random bidding
environment is assumed where the competitions are independent and the probability of winning any
competition is merely a function of percentage markup over cost, the contractor will naturally attempt
to approximate a suitable percentage markup via some sequential approximation procedure that
incorporates the data available from past competitions. The form of the data available depends on
the information divulged to the competitors after each competition. Under minimal disclosure, a
competitor is merely informed whether or not he has won.

In this paper, we suggest a Kiefer-Wolfowitz type stochastic approximation procedure for the
purpose of converging on that percentage markup which maximizes expected percentage profit. The
procedure assumes only minimal disclosure, and it converges under relatively weak assumptions
regarding the p function, i.e., the probability of winning as a function of percentage markup. In the
next section, we delineate those assumptions. In Section 3, the approximation procedure is presented
and its convergence properties are discussed. Section 4 and the Appendix contain the results of a
simulated numerical example designed to provide additional insight into the behavior of our approxi-
mation procedure. Section 5 discusses the addition of a penalty associated with losing a competition
and the behavior of our procedure in a particular deterministic bidding environment. For general
accounts of stochastic approximation, refer to [17], [22], and [23]. We shall make use of results in
[2] and [3]. Generalizations of the Kiefer-Wolfowitz procedure are discussed in [5] and [6].

The quantitative competitive bidding literature contains papers developing the entire spectrum
of mathematical models from purely statistical to purely game theoretic. We have included a variety
of these papers in our references; however, our approach is purely statistical and is properly considered
as a descendant of the original Friedman model [8]. Unlike previously suggested statistical procedures,
however, it is nonparametric, i.e., it is not necessary to specify a functional form for p. The calculations
involved are trivial; they can be performed on any modern desk calculator, or for that matter, on a
slide rule.
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2. PRELIMINARIES

For x = —100, let p(x) be the probability of winning any competition when the percentage markup
over cost is x, i.e., given cost C >0, the bid is (1+0.01x)C, and p is assumed to be independent of
C. (By cost here, we mean the direct projected expenditures involved in fulfilling the terms of the
contract.) This setup is equivalent to that of the Friedman model.

We assume that p is nonincreasing on (— 100, ©) and that =sup{x:p(x) > 0}e(0, ). It is clear
that there exists, in any realistic situation, a finite least upper bound on percentage markups with
any chance of winning. We do not assume that its value is known, but we do assume that 0 < b; =
b < by < with by, b, known. In other words, we assume that the contractor is able to specify a compact
interval in (0, ©) which covers b.

We shall assume that the expected percentage profit function f(x)=xp(x) is strictly unimodal
with unique maximum point 6¢(0, ). Moreover, we assume that f is strictly increasing on (0, 8),
with positive lower derivative bounded away from zero on (0, 6 —8) for arbitrarily small & > 0, and
that fis strictly decreasing on (8, b), with negative upper derivative bounded -away from zero on (8+
8, b) for arbitrarily small 8 > 0. The conditions on f are required in order to disallow such phenomena
as zero-slope inflection points as well as multiple local maxima. The strict unimodality of f implies, in

particular, that p must be continuous on (0, 6), left continuous at 6, and strictly decreasing on (8, &).

3. THE APPROXIMATION PROCEDURE

Choose positive numbers X;, a, ¢, and « such that X; < b;, ¢ < min (X, b, —X}), a < 2¢?/b,, and
3/4 < a < 1. Define positive sequences {an} and {c»} by an=an* and c,=cn"4. With U} and U,
depending only on X, let

(1) P{U;=1|Xa} =1—P{U;=0|Xa} = p(Xa+cn),
(2) Vi=Xa+c)U;,

3) PU;=1|Xa} =1=P{U;=0|X,} =pXn—ca),
4) Vy= (Xn— Cn)U; s

(5) Yo= 2ca) (V5 = Vi) s

(6) - Xn+1 =Xn + anYn,

(7) Wa=(2n)1 S (Ui + U7), and

(8) Zu= (@) S V7 + V7).

i=1

In the above setup, X, is the estimate or approximation of 8 just prior to the nth stage, and (6) is

the basic recursion relation. The nth stage consists of two consecutive competitions at percentage
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markups X,+c, and X,—c, yielding percentage profits V' and V';, respectively; U; and U;, are just
the zero/one (lose/win) indicator random variables associated with the nth stage competitions. Y, is
the estimate of the derivative or gradient of fat X,. (f need not be differentiable; note, however, that
E(Y,|X,)=(2c,) '(f(Xntcn)—f(Xu—cn)).) The estimate moves in the estimated gradient direction
with the step size and the spread between percentage markups at a stage decreasing at predetermined
rates as n increases. W', is the proportion of competitions won and Z, is the average percentage profit
over the first n stages.

QOur conditions on Xy, a, and ¢ insure that ¢, < X, < b for all n. Under the assumptions of Section
2, X,— 6 as n—> © with probability one and in the mean square, i.e., P{lim X,=8}=1 and lim E
[(X2—6)2]=0 (cf. [3]). Moreover, if p is continuous at 8, then W,—> p(0) and Z,— f(8) with probabil-
ity one. Some additional assumptions yield an asymptotic distribution for X,. If p(8) <1, p'’ exists
and is continuous in a neighborhood of 6, and f” (8) <0, then (n®* '2)12? (X,—6) is asymptotically
normal with mean zero and variance

9) o= (af4c®) (£(6) (0—£(6)) /1" () ]).

In other words, X, is approximately normally distributed with mean # and variance o*/n*~'2 for n
sufficiently large. (This result follows from a theorem in [2] since limvar (¥} |X,) =limvar (V;|X.) =
0’ p(0)(1—p(0))=f(0) (0—f(8)). The general theorem in [6] yields the same result under a Lipschitz
condition on p’’ at 6.) Of course, ¢ is unknown, but this result does indicate the speed of convergence
and the dependence of asymptotic variance upon the various parameters. It is not surprising that o is
inversely related to the degree of curvature or “‘peakedness’ of fat 6.

The asymptotic performance of the procedure obviously improves as c¢ is increased, as a is de-
creased, and as « is increased. (We have disallowed =1 because a special condition required in this
case for asymptotic normality will not generally obtain under our assumptions.) Assuming that c is
specified, the magnitude of step size is governed by a, and the rate of decrease in step size is governed
by a. A procedure with relatively small ¢ and « near one might be termed ““conservative,” and a pro-
cedure with relatively large a and « near three-quarters might be termed “aggressive.” A conservative
procedure is relatively good asymptotically, but it may not move much in the short run. An aggressive
procedure is relatively bad asymptotically, but it may be preferable in the short run if the initial bias
|X; — 6] is large. A lot depends on the confidence one has in the initial estimate X;. In the case of a
seasoned competitor, this estimate may incorporate a good deal of experiential intuition and/or histor-
ical data. It may be a percentage markup that has yielded satisfactory results in the past. In such in-
stances, conservatism may be appropriate. On the other hand, an aggressive stance may be appropriate
for a relatively inexperienced competitor.

We note that there is no stopping mechanism built into the approximation procedure. It is assumed
that the contractor continues the procedure indefinitely. Under our assumptions, he has no reason to do

otherwise.

4. SIMULATED NUMERICAL EXAMPLE

In order to give a better idea of how the approximation procedure works, we have simulated
three 25-stage runs under the assumption that p(x)=0.8—0.04x for 0 <x<20=5, b,=15, and
b:=30. Then 6=10, p(8) =0.4, and f(8) =4. In each case, we have put X,=9, c=3, a=0.6, and



140 . R. A. AGNEW

a=0.76. The random numbers employed were taken from [18] as follows: column 9, page 626 in Run 1;
column 1, page 627 in Run 2; column 3, page 628 in Run 3. The results are rounded to three decimal
places, although more digits were actually carried in the calculations. The runs are detailed in the
Appendix. The net results are: Xs=9.945, W.5=10.300, Z,5=2.877 in Run 1; X»s=10.055, >; = 0.480,
Z35=4.833 in Run 2; X26=9.266, W5 =0.440, Z>5=3.796 in Run 3.

These runs represent three possible (although not necessarily likely) realizations for the first 25
stages of an approximation procedure with specified parameter values in the assumed bidding environ-
ment. In each case, there is a net movement, however irregular, in the direction of 6. Actually, one

should expect a lot of “wandering” in this example since the objective function is relatively “unpeaked.”

5. CONCLUDING REMARKS

Suppose that the contractor wishes to associate a penalty with losing a competition. Presumably,
such a penalty should vary with the size of the contract. Suppose that the penalty is a fixed percentage
B >0 of the contract cost, i.e., the penalty cost is 0.018C if the contract cost is C. Then, the contractor

wishes to approximate the percentage markup 6 maximizing

(10) flx) =xp(x) =p(1—p(x)) = (x+B)p(x) =B,

for x >—pB. The changes required in the approximation procedure of Section 3 are c—8 <X, <b,—c,
Vi=Xp+ea+B)U;—B,and V= (Xy—cn+ BU; —B.

In practice, a suitable objective value for 8 may be difficult to obtain. However, a positive penalty
may be viewed merely as a subjective device to reflect the contractor’s increasing aversion to losing
contracts of increasing size. Increasing 8 has the conservative effect of decreasing the optimal per-
centage markup and of increasing the corresponding probability of winning.

In Section 2, we have made certain plausible assumptions regarding the p function which guarantee
convergence of the approximation procedure. However, these assumptions are not necessary for the
procedure to produce satisfactory results. Consider a deterministic bidding environment where p(x) =1
for. x < be(0,) and p(x) =0 for x > b. One can think of this situation as arising in two somewhat
artificial ways. The contractor could have a single, fixed competitor who always bids a constant (un-
known) percentage markup over the contractor’s cost with ties decided in favor of the contractor.
Alternatively, the contractor might be the sole bidder with a fixed (unknown) upper bound on acceptable
percentage markup stipulated by the contractee. Using the procedure of Section 3 with b, b, and b
playing the same roles, it is not difficult to show that X,— b, W,—~ 1,and Z,— b as n— ®. As n in-
creases, the markups get generally closer to b, but fewer and fewer of them exceed b. Our previous
remarks concerning the choice of a and « also apply here.

The practical man may question the utility of a mechanistic procedure which converges rather
slowly. It is true that our procedure may be somewhat myopic in a bidding environment where full
disclosure of bids and identities is the rule. Even in such an environment, however, our procedure
might be useful as a final “honing” device. Regarding speed of convergence, we remark that statistical
estimation procedures are usually not too fast. In terms of asymptotic variance, one can generally
do no better than order n-'. Finally. the contractor will have to adapt to the bidding environment in
some fashion. Our procedure at least has the advantage of simplicity and of known asymptotic properties

under relatively weak assumptions.
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APPENDIX

TaBLE 1. Simulation Run 1
n X U; Vi U; 2
1 9.000 0 0 0 0
2 9.000 0 0 0 0
3 9.000 0 0 0 0
4 9.000 0 4] 0 0
5 9.000 1 11.006 1 6.994
6 9.177 0 0 0 0
7 9.177 1 11.021 1 7.332
8 9.313 0 0 1 7.530
9 9.053 1 10.785 0 0
10 9.404 1 11.091 0 0
11 9,747 0 0 0 0
12 9.747 0 0 1 8.135
13 9.518 0 0 0 0
14 9.518 0 0 0 0
15 9.518 0 0 0 0
16 9,518 0 0 0 0
17 9.518 0 0 0 0
18 9.518 1 10.974 0 0
19 9.769 1 11.206 1 8.332
20 9,833 0 0 0 0
21 9.833 1 11.235 1 8.432
22 9,893 0 0 0 0
23 9.893 0 0 0 0
24 9.893 0 0 0 0
25 9.893 1 11.234 1 8.551
26 9.945
TABLE 2. Simulation Run 2
n Xn U;r V;: Ur_l V;
1 9.000 1 12.000 1 6.000
2 9.600 0 0 0 0
3 9.600 1 11.880 1 7.320
4 9.860 0 0 1 7.739
5 9.479 1 11.485 0 0
6 9.984 1 11.901 0 0
7 10.461 1 12.306 1 8.617
8 10.598 1 12.382 1 8.814
9 10.722 1 12.454 0 0
10 11.128 0 0 0 0
11 11.128 0 0 0 0
12 11.128 0 0 1 9516
13 10.860 0 0 1 9,280
14 10.609 0 0 0 0
15 10.609 1 12.133 0 0
16 10.914 0 0 1 9.414
17 10.685 0 0 0 0
18 10.685 0 0 1 9.228
19 10.474 0 0 0 0
20 10.474 1 11.892 1 9.055
21 10.535 0 0 0 0
22 10.535 1 11.920 1 9,150
23 10.592 0 0 1 9,223
24 10.406 0 0 1 9.051
25 10.227 0 0 1 8.885
26 10.055
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TABLE 3. Simulation Run 3

n X U v U, v,
1 9,000 0 0 1 6.000
2 8.400 0 0 0 0
3 8.400 1 10.680 1 6.120
4 8.660 1 10.782 1 6.539
5 8.870 1 10.876 1 6.863
6 9.046 0 0 0 0
7 9.046 1 10.890 1 7.202
8 9.183 0 0 1 7.399
9 8.927 0 0 0 0
10 8.927 0 0 0 0
11 8.927 0 0 1 7.279
12 8.712 0 0 1 7.101
13 8.512 1 10.092 0 0
14 8.785 0 0 0 0
15 8.785 1 10.310 1 7.261
16 8.862 0 0 0 0
17 8.862 0 0 Q 0
18 8.862 1 10.318 1 7.405
19 8.929 1 10.365 1 7.492
20 8.993 0 0 0 0
21 8.993 1 10.394 0 0
22 9.213 0 0 0 0
23 9.213 0 0 0 0
24 9.213 1 10.568 1 7.857
25 9.266 0 0 0 0
26 9.266
|
BIBLIOGRAPHY

(1] Dean, B. V., “Contract Award and Bidding Strategies,” IEEE Transactions on Engineering
Management EM—12,53—-59 (1965).

(2] Dupa¢, V., “On the Kiefer-Wolfowitz Approximation Method,” Casopis Pest. Mat. 82, 47-75
(1957). English translation in Selected Translations in Mathematical Statistics and Probability,
Am. Math. Soc., Vol. IV (1963).

[3] Dvoretsky, A., “On Stochastic Approximation,” Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability I, 39-55 (1956).

[4] Edelman, F., “Art and Science of Competitive Bidding,” Harvard Business Review 43. 53-66
(1965).

{5] Fabian, V., “Stochastic Approximation of Minima with Improved Asymptotic Speed,” Ann.
Math. Stat. 38, 191-200 (1967).

{6] Fabian, V., “On Asymptotic Normality in Stochastic Approximation,” Ann. Math. Stat. 39, 1327—
1332 (1968).

[7] Feller, W., An Introduction to Probability Theory and its Applications (John Wiley and Sons,
Inc..N.Y.), Vol. I, 3rd Ed., 1968; Vol. 11, 2nd Ed., 1971.

{8] Friedman, L., “A Competitive Bidding Strategy,” Operations Research 4, 104—112 (1956).

{9] Griesmer, J. H. and M. Shubik, “Toward a Study of Bidding Processes: Some Constant-Sum
Games,” Nav. Res. Log. Quart. 10, 11-21 (1963).



SEQUENTIAL BID SELECTION 143

[10] Griesmer, J. H. and M. Shubik, “Toward a Study of Bidding Processes, Part I1: Games with
Capacity Limitations,” Nav. Res. Log. Quart. 10, 151-173 (1963).

[11] Griesmer, J. H. and M. Shubik, “Toward a Study of Bidding Processes, Part III: Some Special
Models,” Nav. Res. Log. Quart. 10,199-217 (1963).

[12] Griesmer, J. H., R. E. Levitan, and M. Shubik, “Toward a Study of Bidding Processes, Part IV:
Games with Unknown Costs,” Nav. Res. Log. Quart. 14,415-433 (1967).

[13] Hanssmann, F. and B. H. P. Rivett, “Competitive Bidding,” Oper. Res. Quart. 10, 49—55 (1959).

[14] LaValle, I. H., “A Bayesian Approach to an Individual Player’s Choice of Bid in Competitive
Sealed Auctions,” Management Science 13, 584—597 (1967).

[15] Mercer, A. and J. I. T. Russell, “Recurrent Competitive Bidding,”” Oper. Res. Quart. 20, 209-221
(1969).

[16] Reichert, A. O., “Models for Competitive Bidding under Uncertainty,” Department of Operations
Research, Stanford University, Technical Rept. No. 103 (1968). DDC No. AD663909.

[17] Schmetterer, L., “Stochastic Approximation,” Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability 1, 587-609 (1961).

[18] Sebly, S. M., Editor, CRC Standard Mathematical Tables, The Chemical Rubber Co., Cleve-
land, (1969), 17th Ed.

[19] Stark, R. M. and R. H. Mayer, Jr., “Some Multi-Contract Decision-Theoretic Competitive Bidding
Models,” Operations Research 19,469-483 (1971).

[20] Stark, R. M., “Competitive Bidding: A Comprehensive Bibliography,” Operations Research 19,
484-490 (1971).

[21] Vickrey, W., “Counterspeculation, Auctions, and Competitive Sealed Tenders,” Journal of
Finance 16,8-37 (1961).

[22] Wasan, M. T., Stochastic Approximation (Cambridge University Press, 1969).

[23] Wilde, D. J., Optimum Seeking Methods (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964).

[24] Wilson, R. B., “Competitive Bidding with Asymmetric Information,” Management Science 13,
816-820 (1967).



